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An overview is presented of general aspects of a methodology for inverse thermal analysis of drop-by-drop
liquid-metal deposition based on Green’s functions. This methodology is constructed according to the
general physical characteristics of rapid prototyping processes employing drop-by-drop liquid-metal
deposition. This methodology represents a specific extension of a methodology using basis functions that
was introduced previously for inverse analysis of welding processes, and of energy deposition in general.
The formal structure of the methodology follows from a specific definition of the inverse heat transfer
problem, which is well posed for inverse analysis of heat deposition processes. This definition is based on the
assumption of the availability of information concerning spatially distributed boundary and constraint
values. This information would be obtained in principle from both experimental measurements obtained in
the laboratory, as well as numerical simulations performed using models having been constructed using

basic theory.
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1. Introduction

The inverse analysis of energy deposition processes requires
parametric representations that are both conveniently adjustable
and physically consistent with the nature of these processes.
For the inverse analysis of processes involving drop-by-drop
liquid-metal deposition (Ref 1-4), where built structures can be
characterized by complex shapes, as well as spatially dependent
thermal diffusion, parametric representations that are conve-
niently adjustable are more appropriate (Ref 5, 6) for modeling,
simulation, and process control. It follows that a conveniently
adjustable parametric representation of processes involving
drop-by-drop liquid-metal deposition can be constructed using
linear combinations of basis functions. And accordingly, it
follows that a relatively optimal set of basis functions for
construction of such a linear combination would be the Green’s
functions corresponding to fundamental solutions of the
equation representing the system, i.e., the convective-diffusion
equation. In what follows, general aspects of a numerical
methodology for inverse thermal analysis of drop-by-drop
liquid-metal deposition are reviewed. In particular, the purpose
of this report is to present an overview of the concepts and
properties underlying the methodology for inverse thermal
modeling of drop-by-drop liquid-metal deposition. This over-
view includes discussion of underlying properties of the
methodology that should provide insight for its further
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development and application to progressively more complex
structures fabricated by means of drop-by-drop liquid-metal
deposition. This methodology is constructed according to the
general physical characteristics of rapid prototyping processes
employing drop-by-drop liquid-metal deposition. Formally, this
methodology, introduced previously for inverse thermal anal-
ysis of welding processes and of energy deposition processes in
general (Ref 7, 8), employs linear combinations of basis
functions. These basis functions can be either numerical or
analytical functions. The formal structure of the numerical
methodology follows from a specific definition of the inverse
heat transfer problem, which is well posed for inverse analysis
of heat deposition processes. This definition is based on the
assumption of the availability of information concerning
spatially distributed boundary and constraint values. This
information would be obtained in principle from both exper-
imental measurements obtained in the laboratory, as well as
numerical simulations performed using models having been
constructed using basic theory.

The organization of the subject areas presented is as follows.
First, a brief review is given of the inverse heat deposition
problem and of its specific definition for the inverse analysis
methodology whose general aspects are to be reviewed.
Second, a numerical methodology for inverse thermal analysis
of drop-by-drop liquid-metal deposition is described in terms of
linear combinations of basis functions, according to the general
physical characteristics of such processes. Third, an overview
of general aspects of this numerical methodology is presented.
This overview entails a discussion of the concepts and
properties underlying this methodology. Fourth, a discussion
concerning the interpolation property of the methodology is
presented. Emphasis is given to this property in that it provides
the underlying foundation for the use of approximate analytical
and numerical model representations for quantitative inverse
analysis. That is to say, this property provides the means for the
inclusion of constraint information that in fact tends to
compensate for errors associated with approximate analytical
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or numerical model representations. Fifth, a discussion con-
cerning the computational complexity of Green’s function-
based algorithms is presented. An important aspect of algo-
rithms based on Green’ functions is that they tend have a lower
computational complexity relative to algorithms based on
discrete finite-difference or finite-element representations. This
is shown to be the case for inverse thermal analysis of drop-by-
drop liquid-metal deposition. Sixth and seventh, brief discus-
sions are presented concerning the relationship between direct
and inverse models and of path-weighted diffusivity, respec-
tively. And finally, a conclusion is given.

2. The Inverse Heat Deposition Problem

The inverse heat transfer problem (Ref 7, 8) may be stated
formally in terms of source functions (or input quantities) and
multidimensional fields (output quantities). The statement of
the inverse problem given here is focused on aspects of the
inverse heat deposition problem related to the determination of
heat fluxes via appropriate regularization of their spatial and
time distributions. In general, the formulation of a heat
conductive system occupying an open bounded domain Q
with an outer boundary S, and an inner boundary S; (see Fig. 1)
involves the parabolic equation

T(x,t) -
0 g;’ ) +V(x,t) - VT(x,8) =V - (k(x,6)VT(x,1)) + O(x,1)
(Eq 1a)
for T(x,¢) in Qx(0,¢), with initial condition

T(x,0) = T,(X) in Q, and Dirichlet boundary conditions on
the outer and inner boundaries S; and S, as follows

T(x,t) = Ti(%s,t) X €8 (Eq 1b)
on S; x (0,#), and
T(x,t) = To(Xs,t) X5 €S, (Eq 1c¢)

on S, x (0,#). Here x = (x,y,z) is the position vector, # is
the final time, T'(,¢) is the temperature field variable, x(x,7)
is the thermal diffusivity field variable, T,(%), T;(%,?), and
To(%,¢) are specified functions, and Q(%,¢) is the volumetric
heat source function. Determination of the temperature field
via solution of Eq la to lc defines the direct initial-boundary
value problem. The inverse problem considered here is that
of reconstructing the temperature field 7'(%,¢) for all time

Energy Source

C(x)
Inner Boundary Outer Boundary

T(x:t) K(X,1)

Fig. 1 Schematic representation of inner and outer boundaries of
temperature field that define inverse heat deposition problem
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t € [0, #] based on available information concerning the functions
defined by Eq 1b and lc. This information must be acquired
either experimentally or via direct numerical simulation.
Following the inverse analysis approach, a parametric
representation based on a physical model provides a means
for the inclusion of information concerning the physical
characteristics of a given energy deposition process. It follows
then that for heat deposition processes involving the deposition
of heat within a bounded region of finite volume, consistent
parametric representations of the temperature field are given by

Ny
T(x,t,K) = Ta +ZTk(fc,5€k,t, k) and T(fcC £ K) =T

n’‘n’ n
k=1

(Eq 2)

where the quantity 7, is the ambient temperature of the
workpiece and the locations X and temperature values 7,
specify constraint conditions on the temperature field. The
functions 7} (X, X, ?, k) represent an optimal basis set of func-
tions for given sets of boundary conditions and material prop-
erties. The quantities x; = (xx, vk, zk), k = 1,..., N, are the
locations of the elemental source or boundary elements.

Although heat and mass deposition processes may be
characterized by complex coupling between the liquid-metal
drop and built structure, in terms of inverse analysis the general
functional forms of the temperature fields associated with all
drop-by-drop liquid-metal deposition processes are within a
restricted class of functions, i.e., optimal sets of functions.
Accordingly, a sufficiently optimal set of functions is that of
analytic and numerical solutions to heat conduction equation
for a finite set of boundary conditions (Ref 9). A parameter-
ization based on this set is both sufficiently general and
convenient relative to optimization.

The formal procedure underlying the inverse method
considered here entails the adjustment of the temperature field
defined over the entire spatial region of the sample volume at a
given time ¢. This approach defines an optimization procedure
where the temperature field spanning the spatial region of the
sample volume is adopted as the quantity to be optimized. The
constraint conditions are imposed on the temperature field
spanning the bounded spatial domain of the workpiece by
minimization of the value of the objective functions defined by

N
Zr =3 wa (TGS, 66,%) — T)° (Eq 3)
n=1

where 7, is the target
&= (x505.25)-

The input of information into the inverse model defined by
Eq 2 and 3 is effected by: the assignment of individual
constraint values to the quantities 7j,; the form of the basis
functions adopted for parametric representation; and specifying
the shapes of the inner and outer boundaries, S; and S,
respectively, which bound the temperature field within a
specified region of the workpiece.

At this point, it is significant to note the following. First, the
general trend features of heat deposition processes are such that
the construction of a complete basis set of functions
Ti(X, %, t, k) making up a linear combination of the form
defined by Eq 2 for representation of the associated temperature
field is well defined and readily achievable. Second, for heat
deposition processes, characteristics of the temperature field are
poorly correlated to characteristics of the energy source. The

temperature  for position
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characteristics of the temperature field that are associated with
these processes, however, are strongly coupled only to inner
boundaries on this field, e.g., the solidification boundary. This
property follows from the low-pass spatial filtering property of
the basis functions Tj(%,X,?, x), whose general forms are
consistent with the dominant trend features of heat deposition
processes. Third, given a consistent set of basis functions, the
temperature field associated with a heat deposition process is
completely specified by: the shape and temperature distribution
ofa given inner boundary on the domain of the temperature field;
the diffusivity x, and speed of deposition V. Fourth, the shape and
temperature distribution of a specified inner boundary S; is
determined by the rate of energy deposited on the surface of the
workpiece and the strength of coupling of the energy source to
the workpiece. And finally, in that an inner boundary S; is defined
by its shape and the distribution of temperatures on its surface
T(xs), it follows that one can define a multidimensional
temperature field 7'(%, k, V, T(xs), Xs € Si).

3. Inverse Thermal Modeling of Drop-by-Drop
Liquid-Metal Deposition

As demonstrated in previous studies, the parametric repre-
sentation of the form given by Eq 2 is sufficiently flexible for
construction of temperature fields associated with heat depo-
sition processes where source and workpiece characteristics are
relatively simple. It is significant to note, however, that many
energy deposition processes are characterized by volumetric
coupling of the energy source and associated diffusion patterns
that are relatively complex. Accordingly, it would be advan-
tageous to extend the adjustability of the mapping defined by
Eq 2 for the purpose of representing more complex diffusion
patterns. As shown previously, the adjustability of the param-
eterization can be extended by adopting basis functions whose
spatial distributions are spatially modulated. Among the many
different possible types of spatial modulation that can be
applied are those whose application produces diffusion patterns
that are directionally or path weighted.

Given the parameterization framework defined by Eq 1, 2
and 3, it follows that a consistent representations, in terms of
basis functions, of the temperature field associated with heat
diffusion patterns are

Ne N

T(x,6) = Ta+ Y Y C(&)F (%, &, nAt, (%)) 5(nAt — ;)

k=1 n=1
(Eq 4)
where

(=x)+ =)+ E—z)
4xc(X)t

R R 1
F (%, %, t, k(X)) =GR%XP |~

(Eq5)
and
C()Ack) = zk:qké(fc — )Ack)é(t — tk) (Eq 6)
k=1

t = N,At and 0(x)d(¢) is the product of Dirac delta functions
representing the instantaneous deposition at locations
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Xk = (xk,vk,zx) at times 7 = f. It follows from Eq 5 that the
speed of energy deposition V is an implicit function of posi-
tion and is given by

X = X1

b —ti1
It is significant to note, and is well known, that the Green’s
function Eq 5 has various extensions (see Ref 9) according to
different types of boundary conditions that could possibly be
imposed on the built structure.

Referring to Eq 4-6, it is to be noted that spatial modulation
of the diffusion field can be achieved through functional
dependence on the diffusivity function x(X). Accordingly, the
procedure for inverse analysis defined by Eq 1-6 entails
adjustment of the parameters C(X;), X, At, and x(x) defined
over the entire spatial region of the workpiece. With respect to
inverse analysis, a functional form for x(x) can be adopted that
is based on path-weighted diffusivity in order that heat
diffusion be consistent with the general trend features of
anisotropic diffusivity. This would be necessary for inverse
thermal analysis of inhomogeneous systems. The goal of using
a reasonably optimal set of basis functions for parametric
representation, however, implies the necessity of adopting a
form of (%) that is physically consistent with heat diffusion
occurring within materials having anisotropic diffusivity.

4. Concepts and Properties Underlying Inverse
Thermal Modeling of Drop-by-Drop Liquid-
Metal Deposition

The following concepts and properties concerning the
inverse-problem approach and methodology applied to the
analysis of heat deposition processes have been discussed and
illustrated by various case study analyses that have been
referenced in the literature and are very important for the
understanding and application of the inverse-problem practices.
An overview of these concepts and properties are now
presented within the context of inverse thermal analysis of
drop-by-drop liquid-metal deposition.

(1) The direct-problem approach to the analysis of heat
deposition processes can be defined as a method in
which the temperature field throughout the region of
interest within the workpiece is predicted using either
an explicit numerical solution of the coupled equations
of energy, momentum, and mass transport or an expli-
cit physical model based on analytical solutions to the
heat conduction equation for a given set of boundary
conditions. The direct-problem approach requires an
a priori knowledge of the physical characteristics of
the energy source and of the nature of its coupling to
the workpiece. Further, this approach requires knowl-
edge of the thermal and fluid flow properties, as a
function of temperature, of the material making up the
workpiece.

(2) The inverse-problem approach to the analysis of heat
deposition processes can be defined as an approach in
which the temperature field throughout the region of
interest within the workpiece is predicted using a
model representation whose form is relatively conve-
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nient or optimal for adjustment of parameters. The
adjustment of parameters is according to the character-
istics of the experimental data concerning the actual
temperature field at various locations that are suffi-
ciently distributed spatially and temporally through the
region of interest within the workpiece. The model rep-
resentation adopted for an inverse-problem approach
can be based on either parametric or discrete-field for-
mulations. Parametric formulations can range from
those that include detailed descriptions of the underly-
ing physical processes to those characterized by inter-
polation functions whose forms are relatively simple.
Discrete-field formulations consider a discrete three-
dimensional field representation of the temperature
field. In this type of formulation the discrete tempera-
ture field values themselves are to be adjusted accord-
ing to the characteristics of the experimental data.

The inverse-problem approach presented here is for-
mally equivalent to constrained parameter optimization
of the simulated temperature field using both paramet-
ric and discrete-field representations.

A parametric representation based on a physical model,
or direct-problem formulation, provides a means for
the inclusion of information concerning the general
physical characteristics of the process, which is in
addition to that provided by localized constraints, and
therefore provides an implicit global constraint on the
parametric model representation, which is based on
theory.

Optimization criteria are satisfied in principle by mini-
mization of an objective function Eq 3, which is
defined in terms of experimental data concerning the
temperature field and associated heat deposition pro-
cess that are sufficiently distributed in space and time.
In the case of processes employing drop-by-drop
liquid-metal deposition this data would include the
average initial temperature and location of each drop
and the temperature history at sampling points mea-
sured using thermocouples.

Procedures for minimization of the objective function
can in principle be enhanced based on the observation
that thermal profiles resulting from heat deposition pro-
cesses can be represented by a relatively small class of
geometric shapes.

In general, information concerning material properties,
fluid flow properties, and the physical character of a
given heat deposition process can be represented
implicitly via a specified distribution of temperature
values over a closed surface bounding a given region
of the workpiece.

The inverse-problem approach can be extended, in
principle, for the determination of quantities that can
be related to material properties.

The uniqueness and sensitivity of the simulated tem-
perature field relative to parameter optimization are
dominant characteristics of the inverse heat conduction
problem. The inverse heat conduction problem must be
well defined relative to these aspects in order that it is
not ill posed. Accordingly, the inclusion of detailed
information related to liquid-metal shape and tempera-
ture distribution will tend to be not relevant for deter-
mination of the temperature field characteristics outside
the region of the droplet.
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The concept of an apparent heat source as viewed from
the perspective of a specified region of interest within
the temperature field represents a significant aspect of
the inverse-problem approach for analysis of heat
deposition processes. This concept establishes a foun-
dation for the modeling of far-field contributions to the
temperature field due to individual liquid-metal drop-
lets.

The types of experimental information that are useful
for inverse thermal analysis of drop-by-drop liquid-
metal deposition processes are solidification cross sec-
tions, thermocouple measurements, relative position,
and spatial character of energy source, energy per
deposit, liquid-drop morphology, surface features of
fabricated structure, and any information related to the
temperature history of the heat deposition process
including transformation temperatures that can be
deduced from analysis of microstructure.

Inverse analyses tend to compensate for fragmented or
incomplete information concerning the detailed charac-
teristics of a given heat deposition process.

Models that are structured for inverse analysis tend to
be insensitive to strong nonlinearities or sharp transi-
tions in scale.

Models that are structured for inverse analysis tend to
be more efficient computationally than model represen-
tations based entirely on first principles or prior knowl-
edge, i.e., direct-problem approaches.

Direct-problem formulations tend not to be “data-
driven,” but require that the input of information be
accomplished only through the assignment of values of
physical parameters. These formulations are inherently
not structured for the representation of over-determined
systems or systems whose characterization is in terms
of large data sets.

Direct-problem and inverse-problem formulations pos-
ses an interrelationship that is important with respect to
analyses based on the inverse-problem approach. An
aspect of this interrelationship is that all direct-problem
based parametric representations may be adopted for
inverse analysis, and that in general, direct-problem
analyses can be interpreted as inverse-problem analy-
ses. This interrelationship implies that a reasonable
starting point for the formulation of an inverse-problem
based parametric representation is to adopt a direct-
problem based parametric representation as an initial
ansatz for further modification (or optimization)
according to the characteristics of the experimental data
concerning the field quantities of interest.

The general solution to an inverse problem is not a
model of the system whose characteristics are consid-
ered for analysis, but rather a set of models that are
consistent with both the data and a priori information
concerning the system.

The inverse-problem approach to the analysis of physi-
cal processes, or systems in general, has been applied
to a wide range of applications. Among the many in-
verse problems associated with the analysis of physical
systems, the inverse heat transfer problem defines a
particular class of problems that are characterized by a
particular range of system-response properties. Our
inverse-problem approach considers a specific category
of the inverse heat transfer problem, i.e., those
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A Build-up Direction

associated with drop-by-drop liquid-metal deposition.
Further discussion concerning the inverse-problem ap-
proach in general can be found elsewhere (Ref 7, 8).
Parametric models adopted for inverse analysis can be
approximations of models based on theory. In that the
calculated temperature field is adjusted according to
constraint information, the parametric model represen-
tation of the temperature field can be constructed based
on approximations. This follows in that the inclusion
of Eq 3 provides an interesting property with respect to
error propagation. Referring to Eq 3, one notes that the
calculated temperature field is, at any given time, in
principle, “corrected” according to values of target
temperatures T,. It follows that by inclusion of Eq 3,
which is with respect to an inverse-problem perspec-
tive, the representation defined by Eq2 and 3 is
equipped with a predictor-corrector property for calcu-
lating the time-dependent temperature field. That is to
say, any error propagation that is related to time step
size, tending to cause the calculated temperature field
to deviated from its correct values, is corrected for
within a specified tolerance Z7 < &g at those times
when Eq 3 is applied and parameters are adjusted
accordingly.

In that the functions Tj(%,X,?, k) represent an optimal
basis set of functions for given sets of boundary condi-
tions and material properties, it follows that Green’s
functions for the heat condition equation would be a
good choice.

Processes based on drop-by-drop liquid-metal deposi-
tion are characterized by multiple space and time
scales. In particular, one can associate solidification of
individual liquid-metal droplets with relatively small
space and time scales, while associating heat transfer
to points within the built structure, from the different
droplet sites, with relatively larger space and time
scales. The difference in space and time scales is
described schematically in Fig. 2. It is significant to
note that the model representation defined by Eq 4-7
permits the embedding of fine-scale model representa-
tions that would represent the interaction of liquid-me-
tal droplet with a built structure.

Mold Boundary
Droplet
p ez B
L
/
@
A
|
Substrate ‘ - L]

A: Local-Field Contribution

B: Far-Field Contribution @ Sampling Points

Fig. 2 Schematic representation of local and far-field contributions
to a given temperature sampling point
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Interpretation of parametric model in terms of numeri-
cal methods. The parametric model representation
defined by the linear combination of analytic functions
given by Eq 4 through Eq 6 can be interpreted in terms
of numerical methods. This follows in that each drop
can be associated with a finite volume element that is
active throughout the time evolution of the system.
Accordingly, Eq 4-6 represent a discrete representation
of drop-by-drop liquid-metal deposition, when diffusiv-
ity varies reasonably as a function of position that is
unconditionally stable with respect to time step size.
The diffusivity function k(X) represents an adjustable
quantity with respect to inverse analysis. The paramet-
ric model representation defined by Eq 4-6, defines a
diffusivity function that is inherently a time and space
averaged quantity. Accordingly, only approximate val-
ues of x(X) are needed for inverse analysis. This char-
acteristic of (X) is consistent with the general
property that parametric models adopted for inverse
analysis can be approximations of models based on
theory. In addition, however, this characteristic of (%)
implies that information concerning the diffusivity
function for a given material, or combination of materi-
als, can be deduced using inverse analysis. This inter-
pretation of x(X) as a field quantity to be constructed
by inverse analysis, in addition to the temperature field,
is described schematically in Fig. 1.

Specification of inner and outer boundaries S; and S,,
respectively, for drop-by-drop liquid-metal deposition.
Shown in Fig. 3 are calculations of the time-dependent
temperature field (°C) of a two-dimensional built struc-
ture during formation of its fifth layer. Values of the
model parameters for this calculation are given else-
where (Ref 6). This calculation is examined with
respect to the inverse analysis formalism defined
above. Referring to Fig. 3, one can associate the
boundary defined by the liquidus temperature (i.c.,
boundary between dark and light region) with an inner
boundary S;, and similarly, the temperature history at
any point on the surface of the built structure with an
outer boundary S,. It is significant to note that, in prin-
ciple, temperatures associated with both S; and S, are
experimentally observable and therefore adoptable as
constraints for application of the procedure defined by
Eq 4-6.

5. Interpolation Property of Inverse Analysis
Methodology

The specific definition of the inverse heat conduction
problem given by Eq 1 implies an underlying interpolation
structure whose existence should in principle provide for
further extension of the methodology described above. This
property, which is somewhat intuitively obvious, can be
described with reference to Fig. 1. Specifically, one notes that
the general parametric representation given by Eq 2, which is
that of a linear combination of basis functions and constraint
conditions, establishes fundamentally an interpolation between
boundary values T(x,¢) = Ti(%;,¢)(%s € Si) and T(x,¢) =
To (%5, 1) (35 € S,).
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Fig. 3 (a) Specification of inner and outer surface boundaries S;
and S, for time-dependent temperature field (°C) of two-dimensional
built structure during formation of fifth layer. (b) Temperature field
gray scale from 0 to 1455 °C

First, it is to be noted that given a discrete-field represen-
tation of the temperature distribution, the interpolation operator
is defined by the expression

1 6
-1y
6k:l

where the subscripts index discrete locations in space and the
superscripts index sequential discrete time steps. The index &
denumerates the six neighbor nodes of node p.

Next, it is interesting to note that the general form of any
discrete solver for the parabolic equation Eq 1, explicit, implicit
or semi-implicit (see Ref 10), is given by

6 6
T;-H _ Z%+1T£+l +Z"VZTI:’
k=1 k=1

(Eq 8)

(Eq9)

At this stage a formal comparison of Eq 2, 8, and 9 reveals a
relatively interesting property within the context of the inverse
heat conduction problem defined by Eq 1. This property
concerns the fact that both Eq 2 and 8, although representing
different algorithms for the inclusion of a priori information
concerning material properties of the system, via specification of
x(%) in Eq 2 and the coefficients (wi™", wf) in Eq 9, are structured
for interpolation and tend toward being equivalent to Eq 9 as the
influence of boundary values 7'(x,¢) = Ti(%,¢) (X, € Si) and
T(x,t) = To(%y, 1) (x5 € So) tends to increase.
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6. Computational Complexity of Green’s Functions
Based Algorithms

Model representations based on Green’s functions of drop-
by-drop liquid-metal deposition are significant in that the
general complexity of an algorithm for inverse modeling of
such processes can be reduced. This reduction of algorithm
complexity can be shown using the mathematical formalism of
algorithm complexity theory. Accordingly, the complexity of an
algorithm can be expressed in terms of its computational cost
Ny, which represents the number of operations required for its
implementation. For the general modeling of drop-by-drop
liquid-metal deposition this quantity may be decomposed into
different contributions such that

Nipr = NyNNyN,N; (Eq 10a)
where

Na = NsN, (Eq 10b)
and

Ny = NyNg (Eq 10c)

The different factors contributing to the computational cost
Ny, Eq 10a to 10c, are as follows. The quantities N, and N, are
the number of droplets and discrete time steps, respectively,
NN, N. is the size of the system in terms of number of discrete
volume elements, Ng and N, are the number of elemental heat
sources per droplet and the number of operations per heat
source element, respectively. The number of operations N, is in
principle decomposable, i.e., Eq 10c, into the number of
operations associated with volumetric heat transfer Ny and that
number associated with weighting of heat transfer by the
presence of nonconducting boundaries Np. It is significant to
note that the filtering properties associated with heat diffusion
impose conditions such that Ny = 1 and that the calculation of
temperature histories at a finite number of sample points
provides a significant reduction in size of simulations in that
essentially NyN,N, = 1.

Referring to Fig. 2, it is to be noted that the local
contribution to any given sampling point is calculated using
model representations of droplet interaction with the ambient
material making up the structure at that location. This
contribution is assumed to occur on different space and time
scales than those associated with the far-field contributions.
Typically, the algorithmic complexity of any model represen-
tation of drop-structure interaction would be that characteristic
of a discrete solver for the parabolic equation Eq 1, i.e., Eq 9.

7. Relationship Between Direct
and Inverse Models

Strictly speaking, Eq 5 and its various extension according
to different types of boundary conditions are solutions to the
heat conduction equation only for the case of k(%) equal to a
constant value. For this case the representation defined by the
linear combination Eq 4-7 could be considered an approximate
model representation of drop-by-drop liquid-metal deposition,
which is based on the direct-problem approach, where it is
assumed that the constant value of k(%) can be adopted as a
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quantitatively accurate material property. The generalization of
Eq 5 for the inclusion of a diffusivity function (%, ¢), which is
in general not independent of position or of time, cannot be
interpreted in terms of solutions to the heat conduction
equation. For this case, consistent with the inverse-problem
approach, the parametric model representation defined by the
linear combination Eq 4-7 is to be interpreted in terms of a
parameter optimization problem, i.e., parameter optimization
according to minimization of a specified objective function
Eq 3.

8. Path-Weighted Diffusivity

The generalization of Eq 5 for the inclusion of a diffusivity
function x(x,#) is based on the interpretation of the model
representation Eq 4-7 in terms of a parameter optimization
problem. This interpretation permits further generalization of
Eq 5, and its various extensions according to different types of
boundary conditions (Ref 9), for the inclusion of path-weighted
diffusivity. This generalization is significant in that a path-
averaged diffusivity function is consistent with the general
trend features of anisotropic diffusivity. In addition, it is
important to note that this generalization is to be interpreted
with respect to far-field influences with respect to a given
sampling point within a structure. Local influences would
include spatial and temporal dependence of the diffusivity
function via the form of the discrete solver for the parabolic
equation Eq 1, which is adopted for modeling drop-structure
interaction. With respect to far-field influences (see Fig. 2),
given that a function (%, ¢) has been specified, a general path-
dependent weighted average diffusivity can be given by

r

1 / / 1 &
(K (r,0,¢)) :—/K(r,e, $)dr' == " ic(kAr, 0, ¢)Ar
r J r =
1
=]7k;x(km,e,¢). (Eq 11)

where the cylindrical coordinates (r, 0, ¢) specify a given
path relative to the location of the source. The functionality
expressed by Eq 11 provides a directional path-integral
weighting of the heat diffusion pattern. This directional path-
weighting, however, defines a path-integral near-neighbors
problem that is associated the directional tracking of diffusiv-
ity values along any given path. Further discussion concern-
ing path-weighted diffusivity functions is given in (Ref 5, 6).

9. Prototype Analysis 1

9.1 Temperature History Due to Metal-Droplet Distribution

In this section prototype calculations are presented that
consider energy deposition within a material characterized by
homogeneous and isotropic thermal diffusivity. These calcula-
tions demonstrate the functional characteristics of the far-field
contributions to the temperature field, as described schemati-
cally in Fig. 2. The prototype system is that of the freeform
fabrication of a two-dimensional coupon for a system whose
thermal diffusivity is assumed constant. The model system
consists of a sequence of layers, where each layer consists of
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a distribution of discrete energy sources whose strengths are
assigned by the values of the coefficients C(%;) defined in Eq 6
and are numerically integrated, or summed discretely, at each
time step. Each of the discrete energy sources represents a
discrete liquid-metal droplet of a given volume. The translation
speed of the sample relative to the point of liquid-metal
deposition is assigned implicitly through the time dependence
and relative locations of the discrete energy sources, C(%x).
That is to say, a certain number of drops per layer and a certain
number of layers as a function of time are specified. The model
parameters used for the prototype analysis are listed in Table 1.
For purposes of this analysis, the basis function F(X, X, ?,x)
given by Eq 5 is adopted for calculation of the temperature
field. These functions are the solution to the heat conduction
equation for a temperature independent diffusivity and non-
conducting boundaries on two surfaces that are separated by a
distance /, which will correspond to the width of the two-
dimensional or blade-type structure to be fabricated. Accord-
ingly, it is assumed that for this simulation there is only
conduction at the substrate boundary and that the substrate
consists of a metal powder composite whose thermal diffusivity
is similar to that of the fabricated structure. An additional
condition imposed on the model system is that of no heat
transfer into the ambient environment at the edges of the
structure being fabricated. This is a realistic assumption for
process conditions where droplet-by-droplet deposition is
adopted for fabrication of blade-type structures. A constraint
condition imposed on the temperature field is that the liquid-
solid interface defined by the alloy liquidus temperature is at
that of the specific metal droplet at any given position within
the material. Accordingly, the values assigned to the coeffi-
cients C(%;) were such that the average temperature of each
discrete droplet was within the range of liquid metal. It is
significant to note that other constraint conditions, such as melt
pool dimensions and measurements of temperature via ther-
mocouples can also be adopted for assigning values to the
coefficients C(%;). In the present prototype analysis the layers
are deposited one on top of the other by traversing the passes in
a zig-zag fashion as shown schematically in Fig. 4. Consistent
with the filter properties associated with thermal diffusion, each
melt bead droplet can be represented by a cube (see Table 1).
This follows in that the filtering of fine spatial structure, which
is due to the Fourier transform character of Eq 4, implies that
the temperature field is insensitive to details of the shape of the
melt bead droplet in the case of far-field contributions to
the temperature field. It is significant to note, however, that the
temperature field is sensitive to the spatial distribution of
droplets, i.e., the pattern for droplet deposition, and the relative
proximity of boundary conditions. The prototype analysis that
follows considers calculation of the temperature field at two

Table 1 Model parameters used to determine thermal
fields in droplet-by-droplet deposition process

Model parameters

Material: Ti

Diffusivity: x = 8 x 107° m?%/s

Time step: At = 0.006 s

Drop deposited every 5 time steps

19 drops per layer

Droplet energy content: C(%;) = 1.5
Droplet volume = (Al)®, Al = 0.4 mm
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different a sampling points within the model structure. One near
a substrate boundary, and the other near a nonconducting edge
boundary.

The prototype analysis is characterized by energy deposition
within a material having homogeneous and isotropic thermal
diffusivity. The system consists of a two-dimensional discrete
distribution of Ti metal droplets having a constant average
thermal diffusivity k (see Table 1) and melt temperature
Twm = 1668 °C, which is the liquidus temperature of Ti. The
prototype analysis that follows consists of temperature field
calculations that demonstrate the spatial and temporal charac-
teristics of macroscopic contributions to the temperature filed,
i.e., the far-field influences. Considered are calculations of
temperature fields that adopt adjusted discrete spatial distribu-
tions of the effective heat source given by Eq 6 so that the
calculated cross sections of the solidification boundary satisfy,
in principle, experimentally observed solidification patterns or
droplets of given volume whose average temperature, which is

A Build-up Direction Mold Boundary
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Fig. 4 Schematic representation of thermal model for inverse anal-
ysis of drop-by-drop liquid-metal deposition process

above liquidus, has been specified. The results of these
calculations are shown below for the weighted sums of basis
functions defined by Eq 4.

As indicated in several previous studies, an example for the
potential application of the two-dimensional model adopted for
prototype analysis here is shown in Fig. 5, which is that of the
fabrication of a turbine blade by laser melt-deposition (Ref 9).
Referring to this figure, it can be seen that the aspect ratio
defined by the thickness of this structure relative to its other
dimensions is such that heat transfer is essentially two-
dimensional in character.

Shown in Fig. 6 and 7 is the time-dependent temperature
field at different stages of the droplet-by-droplet liquid-metal
deposition processes during the formation of a structure
consisting of five layers according to a zig-zag sequence of
metal droplet deposition (see Fig. 4). Referring to these figures,
one can establish a visual correlation of the temperature history

Fig. 5 A turbine blade being made by laser melt-deposition (Ref 11)
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Fig. 6 Time-dependent temperature field (°C) of two-dimensional built structure according to zig-zag sequence of drop-by-drop liquid-metal
deposition. Volume of each droplet is (Al)’, where Al = 0.4 mm. Temperature field gray scale from 0 to 1668 °C
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Fig. 7 (a) Time-dependent temperature field (°C) of two-dimen-
sional built structure according to zig-zag sequence of drop-by-drop
liquid-metal deposition during formation of each layer. (b) Time-
dependent temperature field (°C) of two-dimensional built structure
following formation of final layer

at any given sampling point with the relative position of the
liquid-metal droplet at time of deposition. Accordingly, the
temperature histories at any given sampling point can be
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examined relative to the position of the liquid-metal droplet at
different stages of the droplet sequence. The results of this type
of calculation are shown in Fig. §(a) and (b).

Referring to Fig. 6, 7, and 8, and the inverse analysis
formalism defined above, one can associate the boundary
defined by the liquidus temperature (see Fig. 6) with an inner
boundary S;, and similarly, the temperature histories shown in
Fig. 8 with a point on the surface of an outer boundary S,,. It is
significant to note that, in principle, temperatures associated
with both §; and S, are experimentally observable and therefore
adoptable as constraints for application of the procedure
defined by Eq 2 and 3. It is also important to note that the
calculated temperatures associated with S; can be adopted as
boundary conditions for fine-scale model representations of
drop-structure interaction. The type of calculating is demon-
strated in the next section.

9.2 Approximate Nonconduction Boundary Conditions Using
Green’s Functions

At this stage it is significant to examine the application of
approximate nonconduction boundary conditions using the
formalism of Green’s functions. These types of boundary
condition are significant in that they contribute to a reduction of
computational complexity of the model system, i.e., a
substantial reduction of computational cost.

The nature of approximate nonconduction boundary condi-
tions follows from the structure of the temperature fields
associated with individual droplets as shown in Fig. 7(a).
Referring to this figure, it is to be noted that the symmetry
properties associated with a point source are equivalent to those
of a nonconducting top surface boundary. One is therefore able
to adopt the formalism Eq 4-6, and their various extensions (see
Ref 6-8) for the representation of melt bead droplets, without
the need of expending computational cost for the inclusion of
top surface boundary influences. Again referring to Fig. 7(a), it
can be observed that the same symmetry properties associated
with a point source, which impose nonconducting boundary
conditions at the surface, are extendable to a contiguous linear
distribution of sources. In addition, referring to Fig. 7(a), it is
observed that these symmetry properties are extendable to
subsequent layers. That is to say, for each of the individual
layers, the trend of the unsteady temperature field is consistent
with a nonconduction top surface and windage due to the
relative motion of droplet deposition and substrate. Finally, the
temperature fields shown in Fig. 7(b) are examined. The
temperature fields shown in this figure are for the cooling
period following completion of the droplets deposition
sequence. Again, it can be observed that the cooling trend is
consistent with a nonconduction boundary located at the top
surface of the last layer to be deposited.

10. Prototype Analysis 2

10.1 Temperature History Due to Metal-Drop-Structure
Interaction

In this section prototype calculations are presented that
consider energy deposition within a built structure due to
individual liquid-metal droplets. These calculations demon-
strate the functional characteristics of local-field contributions
to the temperature field, as described schematically in Fig. 2. In
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Fig. 9 Schematic representation of fine-scale model of liquid-metal-
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particular, that the model representation defined by Eq 4-6
permits the embedding of fine-scale model representations (in
terms of both space and time scales) that would represent the
local interaction of a liquid-metal droplet with a built structure.
As throughout this presentation, a quasi-two-dimensional
system is considered, e.g., the system shown in Fig. 5. All
discussions and associated model properties, however, are
directly extendable to three-dimensional systems, e.g., built
structures having shapes of coupons.

A general model for the interaction of a liquid-metal droplet
with the surface of a built structure, as well as the embedding of
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a fine-scale model into the coarse scale model representation
Eq 4-6, which is in terms of Green’s functions, is shown
schematically in Fig. 9. This model consists of two regions, one
associated with the liquid-metal droplet and the other with the
local volume of material comprising the built structure.
Evolution of the temperature field resulting from interaction
of these two regions is calculated using a discrete numerical
solver of the form Eq 9 (see Ref 10). The boundary and initial
conditions on these regions are specified according to the
specific location of the liquid-metal droplet, at a given time,
within or on the surface the built structure, and the local
temperature field in the neighborhood of the droplet as
determined by the model defined by Eq 4-6. Referring to
Fig. 9, it is to be noted that information concerning the
temperature, which has been calculated using the model defined
by Eq 4-6, can be input to the fine-scale model via the various
boundary conditions indicated. For example, for a single liquid-
metal drop on the surface of the built structure, boundary
conditions 1, 2, 3, and 4 would be nonconduction, while
boundary conditions 5, 6, and 7 would be assigned such that
the ambient temperatures near the drop-structure boundary are
those determined by Eq 4-6 according to far-field influences.
For this case, the initial temperature of the liquid-metal droplet
would be that of the liquidus temperature of the given metal or
alloy. Another example is that of an individual droplet which is
adjacent to one or more other droplets at the surface of a built
structure. For this case, boundary conditions 2 and 3 would be
nonconduction, while boundary conditions 1 and 4 would be
assigned according to temperatures of adjacent droplets, which
have been calculated at previous times. Prototype calculations
of temperature fields associated with deposition of liquid-metal
droplets at the surface of a built structure are as follows.

The prototype analysis is characterized by energy deposition
within a material having homogeneous and isotropic thermal
diffusivity. The system consists of a three-dimensional liquid
droplet of Ti metal having a constant average thermal
diffusivity x =5.27 x 10°m?/s at a melt temperature

Volume 21(8) August 2012—1607



Tm = 1668 °C, which is the liquidus temperature of Ti. Each
droplet volume equals (Al)’, where A/ = 1.0 mm. The grid
spacing and time step size adopted for application of the
discrete solver, whose general form is given by Eq 9, are
0.01 mm and 2.0 x 10~ s, respectively. The prototype analysis
that follows consists of temperature field calculations that
demonstrate the spatial and temporal characteristics of fine-
scale contributions to the temperature field at the drop-structure
boundary, i.e., local-field influences.

Shown in Fig. 10 is the time-dependent temperature field for
an individual droplet at the top surface region of the built
structure immediately following droplet deposition. For this
prototype simulation, the boundary conditions at boundaries 1
and 2, and the drop-drop boundary, as indicated in Fig. 9, are
nonconducting. In addition, for this prototype simulation, far-
field boundary conditions at boundaries 5, 6, and 7, as indicated
in Fig. 9, were assign values of 20 °C. This value is arbitrary
and has been chosen only for the purpose of proof of concept. It
is important to remember that the far-field boundary condi-
tions 5, 6, and 7 represent adjustable quantities whose purpose

is specification of a desired average temperature field within the
local-field region about the drop-structure boundary. Again, this
average temperature is predetermined using the Green’s func-
tion formalism defined by Eq 4-6.

Shown in Fig. 11 is the time-dependent temperature field for
an individual droplet, which is adjacent to a previously
deposited droplet, at the top surface region of the built
structure, following droplet deposition. For this prototype
simulation, boundary conditions are the same as in the case of
the individual droplet, except that the boundary conditions at
boundaries 3 and 4, as indicated in Fig. 9, are nonconducting,
and the drop-drop boundary (see Fig. 9) is made conducting.
For this simulation, the temperature field within the local-field
region, which includes the drop-structure boundary and drop-
drop boundary will depend upon the time period between
deposition of droplets according to the specific droplet
deposition sequence, e.g., Fig. 4.

At this stage, it is significant to note that the fine-scale
model of liquid-metal droplet deposition can be further
extended in terms of inverse analysis methodology.
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Fig. 12 Schematic representation of fine-scale model of liquid-
metal-drop interaction with surface of built structure with inclusion
of drop-shape information

In particular, the model representation described schematically
by Fig. 9 can be extended to include droplet shape information.
This type of information can be obtained either experimentally
or by means of liquid-drop models for the simulation of wetting
of surfaces by droplets consisting of liquids having a priori
known surface tension coefficients. A schematic representation
of the extension of the fine-scale model of liquid-metal droplet
deposition is shown in Fig. 12. Referring to this figure, it is to
be noted that the various boundary conditions are specified in
terms of both conduction and shape. Consistent with the inverse
modeling approach, this information is to input to the model
system from available information.

11. Conclusion

The objective of this report was to present a brief overview
of general aspects of inverse thermal analysis of drop-by-drop
liquid-metal deposition using Green’s functions, which permits

1610—Volume 21(8) August 2012

the embedding of fine-scale models of liquid-metal-droplet
deposition. This overview is not meant to be rigorous, but
rather to provide a consolidation for convenient reference of
many concepts and properties underlying inverse thermal
analysis, based on Green’s functions, of processes employing
drop-by-drop liquid-metal deposition. Convenient reference to
these concepts and properties can help to motivate further
development of methods for inverse thermal analysis of such
processes. Similarly, the prototype simulations presented here
are for the purpose of demonstrating application of these
concepts and properties for modeling drop-by-drop fabrication
of realistic structures, e.g., blade structures fabricated using
titanium liquid-metal droplets.
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